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FOREWORD

This report presents the results of an investigation on the effects of
elastic deformatlon on the stability and control of airframes, and in particular
the effectn on the modifications to the longitudinal transfer functions cauwsed
by coupling of the elastic modes. The research reported was sponsored by the
Flight Control ILelLoratory of the Aercanauticsl usystems Livision under Project
No. 8219, Task Mo. 821901, It was started 1 November 1960 and completed
15 February 1962 at Systems Technology, Inc., under Contract No. AF 33(616)~T657.
The ASD project engineer has been Mr, H. M. Davis of the Flight Control

lahoratory, and the project engineer at Systems Technology, Inc., has been
Mr. I. L. Ashkenas and Mr. B. F. Pee.ice, successively.

The authors are indebted to Mr. I. L. Ashkenas for this guidance and numerous
suggestions, and to Mr. R. Walton for his contribution to the section on single

sensor control loop systems. Acknowledgment is also given to the production
etaff for their help in preparing this report.
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ABSTRACT

This report presents results of a study on elastic-airframe dynamics that
are important from the standpuint of flight control system design. Approcimate
transfer functions are given in litera) terms for three classes of vehicles,
These srce of such a form that the important poles and zeros are related directly
to simple function. of aerodynamic, elastic, and inertial properties. The aero-
elastic corrections required to account for the flexihility influences of all
modes not included in the equations of motion are discussed, and a rigorous
method for applying these corrections is presented.

PUBLICATIONS REVIEW

This report has been reviewed and is approved.

C1A Zbgtpord

Chief, Aerospace-Mechanics Branch
Flight Control Laboratory

FOR THE COMMANDER:
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LIST OF SYMBOLS

Constant coefficient

Lift at the 1/4 chord of the ith serodynamic surface due to unit vertical
displacement of the 3/k chord of the J'h surface (1b/ft)

trix cf aiJ's

Root locus gein of w/5 transfer function (ft/seca)

Root locus gain of 0/6 transfer function (rad/sec®)

Root loeus gain of &,/5 transfer function (ft/sec?)

Constant coefficient

Lift at the 1/4 chord of the ilh gerodynamic surface due to unit rigid
rotation of the chord of the jth surface (1b)

Matrix of biJ's
Polynomial coefficient
Iocal chord (ft)
Center of gravity
Center of pressure

Cycles per sec

Moment on the ith aerodynemic surface due to unit vertical displacement
of the 3/l chord of the jth surface (ft-1b)

Matrix of ciJ's
Polynomial coefficient

Centerline

Flexibility influence coefficient giving the physical displacement at
the ith pods* T.uceI T & V3* physieal force (i.e., a force or a

mement) at the )k point (£t/1b)

Lift coefficient per unit « (per rad)

Pitching moment coefficient per.unit 6c/2U,

Decibels (20 log,q amplitude ratio)

Mamant on +he qth o= dyrnamic surface due to unit rigid rotation of the

chosd of ihe §'® suxface (£t-1b)
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(a Matrix of d34's

D Polymomial coefficient

D Damping energy of system (ft-1b/sec)

E Polynomial coefficient

EI Stiffness (.oung's modulus times section moment of inertia)(lb-£t2)

thr Generalized force in q'h mode per unit deflection in rth generaiized
coordinate (1b/ft)

Fhér Generalized force in qth mode per unit velocity in rth generalized
coordinate (1b/ft/sec)

Fp Generalized force in rth mode (1b)

F Generalized force in the first mode, Zm (1b)

Fp Generalized force in the second mode, MIy (£t-1b)

{F} Cclumn matrix of modal forces

(7] Modal forces per uni. deflections in {g} (and unit velocities in {E}, ete.)

h Rigid-body displacement (positive down) (ft)

Iy Total pitch inertia of the system (slug £t2)

Is Pitch inertia of mass two (example in Appendix A) (slug £t°)

(1) The identity matrix

kij Stiffness influence coefficient giving the set of gereralized forces, Qj,
required to make qp =1 and q3 = 0 for i # r (1b/ft)

[x] Matrix of stiffness influence coefficients

K Stiffness influence coefficient of the ith mode (1b/rt)

(] Stiffness matrix ir modsl coordinates

1 Length (ft)

lnk Distance from the airframe center of gravity to the k chord of the nth
aerodynamic surface, positive aft (ft)

I, Z force (positive down) (1b)

L T - U (ft-1b)

m 5.ul wass of the system (slugs)
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mg Physical mass at the ith point (slugs)

(] Matrix of masses

M Aerodynamic moment (ft-1b)

M Rotational acceleration (rad/sec?)

Mq Pitching acceleration per unit pitching velocity (1/sec)

M, Pitching acceleration per unit w (sec/ft)

My Generalized mass of rth normal mode (slugs)

Mg, Rotational acceleration per unit deflection of kth mode (EEQ%%ESE)

Mgy Rotational acceleration per unit velocity of kth mode (rad/ft-sec)

MAC Mean aerodynamic chord

h | Matrix of generalized modal masses

Ny, Numerator of w/5 transfer function

Ng Numerator of §/8 transfer function

N Numerator of &,/ transfer function

P(s) Polynomiul in s

q Dynamic pressure (1lb/€t2)

a Physical displacement (which may be either a trenslation or a rotation)
at the ith point (ft)

{a} Column matrix of qy's

Q Physical force {i.e., a force or a moment) epplied at the ith pcint (

Qai Physical aerodynamic force at the ith point (1b)

Qei, Physical elastic force at the 1%d point (1b)

Qn Pnysical aerc?,.uus. irvce ii, "t caused i s movement of control

surfaces (1b)
{a} Column matrix of physical forces
{o;,}  Column matrix of Q,'s
rad Radians

1{11 Fuysler) zercdynmaic 7, 2e at point i caused by a unit movement of
) punt § (1b/fE)
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a, f

Polynomiels in s

Aerodynamic matriz with elements Ryy

Laplace transform variable (1/sec)

Second(s)

Wing area (ft2)

Time (sec)

Kinetic energy of system (ft-1b)

1/Ty is the position of the zero associated with k (1/sec)
Potential energy of system (ft-1b)

Forward velocity of the vehicle (ft/sec)

Rigid-body velocity measured normal to instantaneous body reference
line (ft/sec)

Transformation matrix whereby h is transformed to w und gll other modal
coordinates remain unchanged

Variable

iRk

Variable

Verticel deflection of elastic vehicle at point i (ft)
Vertical displacement of ith mass (ft)

[Ms2 + K]

Vertical acceleration, along the Z axis (ft/seca)

Vertical scceleration per unit pitching veloeity (ft/sec)
Vertical mcceleration per unit w (1/sec)

Vertical acceleration per unit deflection in kb mode (1/sec?)

Vertical acceleration per unit velocity in kth mode (1/sec)

Angle of attack, w/Uy (rad)

‘rax lubles
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) Control surface deflection {rad)
By 3 Kronecker delta (3;5 = 0, 1 £ 43 By =1, 1 =§)

Denotes finite inerement in quantity

a Transfer function denominator

4 Damping ratio

Cre Damping ratio of the k'h coupled elastic mode

€y Effective structural damping ratio of the rth mode

] Rigid-body rotation (rad)

0y Rotation of elastic fuselage at point i (rad)

Ep Generalized coordinate or displacement of the r'P mode (£t)
é, Time rate of change of the generalized coordinate of the first mode, w (ﬁ:/sec)
P Generalized coordinate of the second mode, 6 (rad)

o Air density (slugs/ft7)

i p mranslation of ith point in rtb normal mode (ft)

Pir Normalized translstion of i'h point in rth mode

LH Normalized rotation of surface at ith point in r'B normal mode
P Normalized shape of the rth normal mode

[¢] Modal matrix, formed with ¢.'s as columns

® Frequency (rad/sec)

Wyee Frequency of the kPM coupled elastic mode (rad/sec)

@ Eigenvalue of the rth normal mode (rad/sec)

= Approximately ~qual to

= Is defined as

< Much less than

>> Much greater than

E Swimation

(" Dot over quantity denotes time derivative
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L] Matrix

(] Diagonal matrix
L J Row matrix

{ } Column matrix

[ ]T Transpose
L ]'1 Inverse

( ): Prime denotes differentiation with respect to fuselage station

Subscripts

a Aerodynamic force

a Acceleration deflections

b Associated with modes of nonzero frequency which are of interest
g Grounded coordinates

ke Associated with kth elastic mode

n Movable coordinates

o Associated with modes of zero frequency

rot Rotation

sp Short period

trans  Translation

Wk kth root of w transfer function numerator

& kth root of 6 transfer function numerator

Epk k'R root; of §, transfer function numerato:

® Associated with modes of nonzero frequency which are not of interest
1/4 Designates the c.p. (ordinarily at 1/4 chord)

%/l Threz-quarter poirt of chovd
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SLCTION I

INTRODUCTION

A. GENERAL

The high-speed capabilities of modern airplisnes depend on (smong other things)
the use of extremely low thickness ratios for lifting surfaces and on very high
fineness ratios for bodies. Coupled with desired payload and range capabilities,
which impose natural restrictions on weight, this dependence leads to fairly
flexible structures and relatively low frequencies for the structural oscillatory
modes. For certain flight conditions, these modes tend to couple with the rigid-
body, short-period motions; in some cases, this tendency is greatly exaggerated
by the action of the autopilot. The danger of such autopilot-flexible airfrume
coupling generally increases as the structure is lightened to reflect reduced
stiffress requirements. In such cases, the incipient air.rame-autopilot instabil-
ity must be checked by analyses which may require, in addition to the normal
rigid-body modes, consideration of

1. as many as the first three or four coupled normal ("free-free")

modes, wnich, in general, comprise fuselege, wing, and tail
deflections

2. structural damping effects, usually included as an equivalent
viscous damping

3. contributions of the structural modes to the sensor ocutput

4, control system nonlinearities and more deteiled treatment of
control system dynamics than necessary for rigie situations

5. nonstationary aerodynamic effects.

Regardless of its complexity, the closed-loop system must be stable for each
of the flight regimes to be encountered. Additionelly, it must accept the
required guidancc iny 'z, . usi o7~ with unicrired inpubs, such as atmospheric
turbulence and noise generated by the airframe-autopilct cystem itself, and must
not exceed structural or other limits. Preferably, this is to be accomplished
with a simple control system.

Manuscript released by the authors April 1962 for publication as an 4SD
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Ad hoc solutions to the problem posed above have been obtained by increasingly
complex multidegree-of-freedom analyses which involve the use of large computer
facilities. Such analyses provide little in. «ut into the physics of the problem;
consequently, interpretation of the results to obtain more than a yes-no answer
and an exlension ~f the findings to slightly modified situations is difficuli.
Furthermore, there is little carry-over from system to system, so that, for
example, the number and types of baslc degrees of freedom required to yield the
critical situation for a new design cannot readily be assessed a priori. The
design process suffers accordingly. Not only is an undesirably long time requivred
to select (and perhaps later modify) the pertinent degrees of freedom, ard to set
up and run the problem, but also modifications required to cure discovered problem
areas are difficult to explain to a design group affected or to management. For
these reasons, it is desirable to obtain simple literal approximations to the
airframe transfer function factors. Such approximations relating the important
poles and zeros directly to simple functions of aerodynamic, elastic, and inertial
properties can provide an invaluable design guide.

This report presents the results of' a 1-year study devoted to ihe analytical
approximation of flexible airframe transfer functions. In this study, three
classes of vehicles were represented by typical configurations, and the influence
of elastic modes on the longitudinal transfer functions was examined {the three
configurations were also subjected to a parallel study, Ref. ?, which yielded
the basic information, i.e., mode shepes, etc., used in this study). Each of
the configurations is shown tc possess transfer function factors which can be
simply approximated by e few msjor terms when interest is confined to only the
first two elastic modes. (The results of Ref. 1 show thet additional higher-
frequency modes do noi appreciably affect the two-elastic-mode transfer function
in the freguency range that is important for rlight control analysis.)

The first conriguration studied (Contiguratio:n 2) is a micsile-like vehicle
with canard control, capable of supersonic speeds at low altitudes. Configura-
tion % is a swept-wing, high-aspect-ratio arrangement, while Configuration b is
a supersonic Aelte-wing vehicle. All three configurations are deserived in
detail in Appeniix C.




B, OUTLIN: OF THE REPORT

The ceport s divided into five sections < “lowed by four appendices. Mbdst
of the analytical woik is presented in Sections II through IV, while the aumeri-
cal data are included in the appendices.

Section II presenta a derivation of the equations which are used to form the
transfer functions. 'The static aeroelastic effect of the truncated high-ivequency
modes on the aerodynamic inputs is discussed and the method of inclusion is shown.
The derivation of the matrix required in this method is presented in Appendix A.

The transfer function factored forms are presented in Section III, along with
the approximation formulas for the three configurations studied. All of these
arproximai;ions were derived by one of the methods presented in Appendix B.

Section IV discusses the problem of sensor location for closed-loop operation.
The effect of sensor location on a particular configuratio: is shown, and a method
for "optimum" placement is suggested. ("Optimum" here implies that the effect of
the elastic modes is minimized with respect to the rigid-body pitch degree of
freedom.)

As noted, Appendix A presenis a derivation of a proper method of accounting
for the elastic modes not inciuded in the equations. This method wus derived in
Ref. 1, and Appendix A parallels that presentetion. An example is included which
utilizes the method, and shows the exactness of the results obtained.

Appendix B presents the several methods that were uscd o derive the transfer
function approximation formulas of Section III. No one method could be found
which consistently produced the simplest approximations; hence, the approximations
were derived by the best of those in Appendix B for the cace at hand.

A detailed desariptinn of the configurations studied is presznted in Appendix C,
along with the normal icde shapes used.

The numerical equations of motion for each configuration are included in
Appendix D, as are the exact transfer functions that these equations yielded.
The equations and the transfer functions were calculated by a digital computer
according to the equations outlined in Section II. The transfer functions

cutaired with the approximatsci. formulas of Sccbion IIX are alsc presented in




L

Appendix D as an indication of their accuracy. All of these data are presented
for a range of dynamic pressures for each configuration with one and two elastic
modes included. .




SECIION II
EQUATIONS OF MOTION

The equations will first be derived in terms of the physical coovdinates of
the airframe, and will then be converted to modal coordinates to allow a reduc~
tion in degrees of freedom and coupling terms by the use of orthogonal modes.
The high-frequency modes will then be eliminated and the equations reduced to a
set involving & limited number of flexible modes. Detailed consideration of the
anvodynamic forces will then give the form of various coefficients involved in
¢he final equations of motion.

A. GENERAL EQUATIONS OF MOTION

The methods for the development of erpressions for the inertial and elastic
forces on a flexible airframe differ, depending on whether the inertial and
external loadings are consiidered to be distributed or concentrated. If they are
considered to be concentrated at a finite number of points, then the displacement
of any point, gy, can be written

i}
Q = ,52—‘1 CiJQJ (1)

where 9 ir the physical displacement (which may be eiiher a translation
or a rotation) at the ith pojus

Cij is the flexihility influence confficient giv.ng the phyciecn
displacement; at the ith point caused by & unit physical force
(i.e., a force or a-moment) at the jth poine

Qﬁ is the physical force applied at the jth point

A force and a moment con ~7  oplied simultaneously at any given location merely

by making two of the n points of application coincident; e.g., th~ first and
second of the n points will be the same if @ is a force applied at some locaticw,

and Qp is a moment applied at the saue location.

The physical elastic force at poirt i due to any sibitrary set of physical
displacements, qj, can be evpressed as




n
Qy = - X kya (2)

J=1
vhere ki is a stiffness influence coefficient. For any § (e.g., § = 1), the
set of k;,'s is equal to the set of forces, Qj, required to mske q, = 1 and

q4 =0 for i f r.

If the distributed air loads over the airframe are considered to act as a set
of concentrated forces, the sum of the elastic and merodynamic forces at the ith
nass may be equated to the inertial force at that point, yielding (neglecting
structural damping)

d?'qi
my w2 Qeg + Qq; (3)
where my is the physical mass at the ith point

Qg 1is the physical aerodynamic force at the i*h point

The aerodynamic force may be considered to be generated by the displacement of a
finite number of physical coordinates on the airframe.

n
Qe.i = z Ryja (1)
=1
where R is the physical aerodynamic force at point i caused
13

by a unit movement of point J. Rjj will generally
be a polynomial in the differentiai operator (or
Laplace variable), s

Using matrix notabicn, it is vossible to wr.ite Eq 2 and L as

-[x]{a} (5)
(8] {a} (6)

{%}

and

{%}




Equation 3 now becomes

el = -Bdi - [RHd} (7

It s customary to combine the elastic and inerliul forces because these do not
vary with dynamic pressure:

ms2 + {a} = [Rl{a} (8)

If movement of the control surfaces, while introducing aerodynemic forces into

the system, does not introduce significant inertial or elustic force, it is
reasonable to separate control surface deflections from the rigid-body and elastic
deflections, and to write Eq 8 as

[ms? + K]{a} = [&{a}+ {Qin} (9

where Qjy 1is the physical aerodynamic force iaput causecC by the move-
ment of control surfaces. Gust loads, nonuniform wind
conditions, etec., will create forces which can also be
included in the Q;, term

Equation 9, when expanded, appears as folluws:

mysZq) + kyqqp + kypap + oee + kynay Ryjqy + Rypag + «+« + Rypa, + Qi

mps®qp + kp1q) *+ kppdp *+ ++r + kppQn = Rpjap + Rpplp + ce + Ronan Qi
. . (10)

. .

2 - XX n
mps=qn + kG + kpodp + e + kpuay Rpiqy + Bpoaz + + SynQn * 4n,

n

Equatiocns 10, then, are the equations of motvion {Lor perturhations from &
trimmed condition) for a flexible airframe represented by n zontrol points (see
Fig. 1). The degree of accuracy employed in the construction of the Bﬂ matrix,
and the number and localion of discrete mass points chosen, will determine the
adequacy of these equations in representing the actual system. Because a great
nupier «f qy'8 1o geneamlly © ndred for an adequate rervesentation of a




4 a2 3 Q -2 9.3 Q-4

Figure 1. Flexible Airframe Represented by n Control Points

continuous airframe with a continuous loading, it is impractical to work directly
with Eq 10 to achieve simple approxiwate methods. As an equation-reducing
alternative, airframe motion is often represenied by a few normal modes; then,
each of the qy's consists of the superposition of the motion nf the modal coordi-
nates; i.e.,

n
3y = J§d>iJFJ(t) (11)
Defining ®
. = i 12
Pi3 rLiJref (12)
Then, n
Q4 = JE (pij‘pi'jrefFJ(t) (13)
Det'ining
&y = ¢ijrefFJ(t) (ik)
Then, A
Q@ o= = (PiJEJ (15)

where Q is the physical displacement at the i%® point on the airframe

®,, is the physical displacement of the ith point caused by a
J unit generalized displacement of the jth normal mode

P 3 is the physical normalized displacement at the ith point
caused by a unit generalized deflection of the jth normal
mode. The collertion of all the @;4's for any given J
rPprssenys the mcuk shape for the jYh normal mode.

8




t; is the generalized dinplacement or coordinate of the jth
normal mode; i.e., ks is a scale factor for the Jth normal
mode, g.ven by the normalized physical displacement (result-
ing from deflection of the jth normal mode , and no other) of
a preselected point on the aiv~ me.

Thus, 9 = Py T @bt e @8
@ = (P21§1 + q)22§2 + see 4 ¢2n§n

. (16}
O = Pmby *Ppoba t ot + Ppnby

This may be written in natrix form as

{a} = [ol{t} (7

Henceforth, [d?] will be referred to as the modal matrix. A typical graphical
presentation of Eq 16 is given in Fig. 2.

The n columns of' [¢] , i.e., the mode shapes, are found bty assuming simple
harmonic motion (s = jw) and substituting Eq 17 into Eq 9,

fk - mf]{o;} = {o} (18)

vwhich can also be written

o} - [mfle} = o (19)
o} - Blf{o} = o (20)
) [ fod = «Blogd (1)

The form of Bq 21 makes it clear that the «f's are eigenvalues of [m) “11x], and
the @;'s are the associated eigenvectors.

For any two linearly independent eigenvectors, it is possible to write
(Eq 20)
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Bdoa} = oflnd {onl (22)
(e} = fidin} (23)

When both sides of Eq 22 are transposed,

o2 0T = oBlof) (T

Therefore, 1621 09 o} = BloB) Bl Moy}
But Dﬂ and Bﬂ are symmetric, whereby
o2} B foot = Bl (o} (24)

Now, premultiplying both sides of Eq 23 by |¢%),

Lof) Bt = flod] m] {o (25)
A comparison of Eq 24 and 25 yields
Bl i ot = oflof] [l {m}
” (@ - @B o} = o (26)
1# o and of are distinct, then
lofl Inl o} = o @7

Section 1.21 of Ref. 5 considers the case where u§ and ug are not dastinet, and
shows that Eq 27 above still holds. Since the implication of Eq 27 is that all
off-diasgonal terms are zero, then for orthogonal modes

("] = [0 (28)




where [kvﬂ must be diagonal. It can similarly be shown that

(700 = (29)

where [K] must be diagonal.

The significance of Eq 28 and 29 is that Eq 9, combined with Eq 17, can be
premultiplifed by [c:T to obtain

[)7[ws? + (e} = [DT[RD e} + [0y} (30)

YR I
vhere [d{] ms= + k] [w] will be diagonal. Therefore, defining

[M82 + K] = [,tlazl“rf"[ms2 + k] [0]
[l = [0[RI [d] (34)
{Fin} = [QJT{Qin}

allows Eq 30 to take the simple form

[s? + ){e} = [rl{e} + {Fun} (22}

where  [M] represents the generalized mass matrix in generalized
coordinates

[K] represents the generalized stiffness matrix in generalized
coordinates

{g} is a column of generalized coordinates (which arc orthogonal
coordinates when [F¢] = 0)

[Fg] represents, in generalized coordinates, the externally
applied forces per unit deflections in {&} (and unit
velocities in §}, ete.)

The left side of Eq 32 represents the struciural dynamics of thce vebhicle in

vacuum (neglreting structural dumping), while the right side represents externally
applied forces. When expanded, the left side will appear as

12




/4, (6 + “’%)51\
M2(52 + a§)§a

o

\Mn(sz + a\?\)gn/

As is normal, &y and &5 will be used to represent rigid-body translation and
rotation, respectively. Thus,

M; = m, the total physical mass of the system

My = Iy, the total physical pitch inertia of the system

£y = h (positive down) (33)
Ex = 0 (positive nose up)

oy = wy = O (no structural stiffness in &, or £p)

The appearance of h is not in keeping with the normal aircraft stability and
control formulation of the equations of motion. Therefore, it is desirable to
transform Eq 32 so that h is replaced by w. Such a transformalion is represcnt-
able by the matrix [w] s Where [w] is defincd by

f'n\ fﬂ\—
s
e )
£ £
DL (34)
Ey k)
\ + ) \ * )

Y

. . 3 3 3
1w Zhbn cose, the matsix 1W] can be found rather easily by using the expression

13




relating w to h and 6 for the assumed unperturbed cordition, Yo = 0.

_ Might Yo S~

W = U, sin 6 + h cos 6

Figure 3. Derivation of the [W] Matrix

SRR

and the desired transformation matrix is

Thus,

0
o . (35)

Using the transform.nicn mati.ix dersned oy 2y %,, snd for convenience defining

[v] [Ms2 + K] (36)

]

Eq 32 becomes

D0Me} = [RIDd{e} + {Fin} L

-~
~
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where & is now w/s rather than h. It can be shown that [’ﬂ[w] is not a disgonal
matrix. It is therefore desirable to redefine [Fg] [w] to inciude the off-diagonal
term from [Y] [w] , thus giving a diagonal form to [Y] [W] . is can ve done by
writing out the [Y] [W] matrix,

[ ms2 ~Ugme 0 0 T
0 Iysa 0 . . . 0
0 0 M3(sa + ag) 0
MM = . ) (28)
0 0 0 Coe. MplsR o) i

and redefining [Fg] [W] so that it includes the -U,ms term that appears in Eq 38.
This will restore [Y] [W] to its original diagonal form.

B. ELIMINATION OF THE HIGH-FREQUENCY MODES

At this point the set of simultaneous relationships given by Eq 37 is capable
of yielding results which increase in "exactness" with the nunber of modes con-
sidered. Since engineering interest is inevitably confined to a limited band-
width, the importance of including higher frequency modes ¢ measured by their
effects in this bandwidth. For example, if all elastic modes are considered to
lie outside the frequency region of concern and all are excluded from the equa-
tions, then the resulting solution yields only the conventional rigid-body
short-period motions. But at appreciable dynamic pressures this is a gross over-
simplification, becau-« the ex.ivdea o.zacturel m.dcz give rise then to at least
an aeroelastic correction on the rigid-body stability uerivuallves. BHuch correc-
tions can be and usually are made by considering only the static deflection
properties of the structure. In this instance, the effects of all possible
elastic modes have becn approximated, for the frequency region of interecti, by
considering only static deflection characteristics. When the bandwidth of interest

in~lude~ & nuricr of low-frog.racy structural modes, the question arises as 4o




the proper aeroslactic corrcction whereby to approximate the influence of ths
neglected modes., Clearly, now the use of the "full" aerocelastic correction Wwill
be incorrect since the modes included in the equations of motion must somehow
alter the approximated contribution of all remaining modes. The proper treatment
of the neglected higher-frequency modes first studied in Ref. 1 wili now be
outlined.

If Eq 32 is partitioned into those coordinates which are of interest (deroted
ot where o#f stands for zero frequency + finite frequency), and into thuse of
higher frequency which ‘are not of direct interest (denoted as &), then the
latter can be eliminated from the equations. This is accomplished as follows:
Using Eq 31 and 36, Eq 32 is rewrltten as

e = [T D1 + [9%eg) (39)

where the transformstion from §{ = h to §1 = w/s has not ye% been made. Then,
partitioning the matrices,

£ 4 i
°+ ,.‘?T‘?‘ .‘.’Tf [R] [four & 0] {500 | + .?’.’? ot o)
Eo oL
and expanding the right side
Yo-l-;f's 0 Losr [ +f] LR] [ Eour o+1'
.0..:.000 LR ) - LU B A °+f . w] LA ) LAC N {Qj'n}
0 ¥o [ | b0 _[°a>]T[R]

(1)

(0] "R [0, ] ¢ [0 203 [0, 1] 1) r@@,-‘,ﬂ{ :
e e e Q n
_If%]T[R] [0453 i [ 00 17[F] (o] | | b0 Lq,frJ 1

= “esesseresssset s st e nese et seee
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O

Equation k1 is equivalent to the two simultaneous matrix equatlions,

oradftoret = [oord "7 [Bored {oouet + [00s) I8 [opd e} + [yl ™fRsn} (42)

and

Bolftcol = [0co] "B [ooued{Eorel + [Poo) T oo tco} + [0 fora}  (43)

Equation 43 can be solved for {goo} » Which can then be substituted into Eq 42.
This will result in equations of motion for the modal coordinates of interest.
Thus, multiplying Bq 43 by [Yoo] ' and solving for {tco}

{goo:} = [[I] - EYoo] - [‘poo]T[R] [‘poo]] B [Yoo] - [°oo] T[R] B o+f] {§o+f}

+ [L1 - Brood ™ o) "I o] Bl ™ ] Mool
(1)
and using this result in Eq %2,

[torel {Eorel = [004s) [R] [osel{toss}
N N [ 9 T P O T
+ Bose 18] o] [ - o] 3B B T TP

o« T fo. .} (45)

Loty
Because

06+ @@ - (@] m

l

(87 (o] + (4]

(B0 + (@]




men [ - freod ™ () ] [o]] o) o)
o [o)” Bl - W]
e ool ][ - Ml lred ] 46)
Using this result, Bq 45 is modified to
Bordftorch = (ord ™l [oord{tors
+ Boodl" Bl Boslliad BT[] - BBt "] e fonch
+ Bonel B Cod o ) - (Bl ] e
+ el (R}
ant. coiecting torms,
Bosdftoreh = [toedl”
|69+ M) Bl [ - 0] Ered  Eod] |
x [ Coorddfeone} + o] (1)

To simplify this further, use the following identity:

W+ @[ -6 - -] -
0 - [0 - @] - e s (- ]

0 - )

[ - 6]

[+ B - )
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whereby Eq 47 reduces to
. - (48)
Bosd{torel = [orad[[d - [ [o0) Brood " 0] | [I8) Coorcdttore} * {aun]

Now, define [A] = [[I] - R [ee) Food -1 [%o]'lj B (49)

Equation 48 then becomes

fYo+1§| {§o+f} = [¢o+f] T[A] [R] [°o+.£‘] {§o+f} + [°o+i:] T[A] {Qin} (50)

Equation 50 is seen to be very similar to Eq 39. However, in Eq 50, the
coiimns of modal coordinates contain only thosc coordinates which are of interest;
therefore, this equation represents a fewer number of sim ltaneous differential
equations to be solved. (In essence, the last r equations have been used to
eliminate the last r varinbles from the set of n simultaneous equations.) Also,
a new term appears in Eg 50 which was not found in Eq 39; this term is the [A]
matrix. It represents the modifications which must be mode in the first n-r
equations to include the effects of the higher-frequency modes. The [A] matrix
thus represents an aeroelastic correction factor to the system. It will theoreti-
cally account exactly for all influences of the higher-frequency modes. However,
the exact calculation of [A] requires all the information contalned in a complete
set of n equations and involves an unwieldy inversion of a muirix containinrg
terms in s and s@ (see Eq 49). At the frequencies of interest, w, which are
alweys much smaller than the higher mode eigenvalues, ay, by definition, the
s and s2 terms, relative to the stiffness term, are proportional to w/uﬁ and
(w/ak)a, respectively; thus they can be neglected. Even then, calculation of
[AJ from Eq 49 would :wyquivc K.owledge .. the hisher-frequency mode shapes.
Fortunately, however, by neglecting the s and s2 terms, tuercuy meking EA] a
quasi-static correction factor, it is possible (Ref. 1) to calculate the quantity

(0] (tood ;1:0 [0co T e (o] (51)

frop 8 knowledge of only the ntetic deflection characteristies of the syoiem.
The: detcils +© this cale-datacn are given in Appendix A.
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C. AERODYNAMIC FORCES

So far, no mention hes been made of methods whereby the [R], [Y], and [¢]
matrices may be calculated. Although the latter two are not necessarily simple
to form, they will not be discussed because of extensive treatments in the
literature (e.g., R°f. 3 and ). Thc same might be said for the aerodynamic
matrix, ﬂﬂ, except for a significant major difference. While the [{] and Eﬂ
matrices may be derived in many ways, the results (for o given physical situation)
Will alweys be the same; this is not true of the &ﬂ matrix, which depends
inherently on the assumptions made as to the origin of aeruvdynamic forces.

For purposes of the present study, a very complete formulation of [Eﬂ is
deemed unnecessary, because it can only affect certain of the numbers appearing
in the equations of motion. #iHince these numbers eie reguirced tc be only repre-
sentative of the configurations involved, the aerodynemic matrix will be reiunred
to-a very simple form. That is, almost all secondary aerodyramic and elastic
effects (e.g., wing-body interference, unsteady serodynemics, chordwise bending)
will be neglected; and the air forces and moments will L2 represented by average
derivatives associated with each lifting surface, or suitable portions thereof.
Accordingly, the center of pressure (c.p.) for lift is assumed to be at a fixed
fraction of the MAC for the surface or portion thereof (0.5 for Configurations 2
and 4 and 0.25 for Configuration 3); no downwash effects are considered on
Configurations 2 and 4; the only (pure) moment is considercd t¢ rcsuli from
pitehing velocity; and the angle of attack for a section it defined by

h
o = o+-2% (52)
Uo
where 2] is the rigid chord roteticn

hz/y is mne ~ “iepl displacement of the 3/4 chord

The selection of h5/u to define the section angle of alttack it in accoriunce with
theoretical aerodynamics [}here, as a boundary condition, the flow velocities

over the upper and lower surfaces of an airfoil are matched at the trailing edge
(Ref. 6)].

‘e 12Vt all this o 1ibtic moce specificully to Bﬂ, refer to Eq § where
the 'S are ordered as

20




{a} = {hm} (53)

]

and the Q's are ordered as

{%} {

Z-force at c.p.} (5)
5

moment

Note thet the moment does not require specification of a point of applicaticn
because the chord is assumed rigid. Now, partitioning the ﬁﬂ matrix,

(&

n

0

-

-

-

.
sececce

vhere, in generel,

ajj 1s the Z-force (negative 1irf€) at the c.p. of th2 ith
~erodynamic surface due to unit vertical displacement of
the: 3/4 chord of the jth surface

byj is the Z-force (negative lift) at the c.p. of the ith
aerodynamic surface due to unit rigid rotution of the
chord of the jth surface

¢jj is the moment on the ith gerodynamic surface due to unit
vertical displacement of the 3/4 chord of the jth surface

djj is the woment on the 1th aerod"ﬂimic gurface dne to unit
rigid rotation of the chord of the J surface

The literal expressions for the partitions of Bﬂ are found from the general 1lift
and moment equations. The Z-force at the e.p. (which for convenience is desig-
nated by the subscript "1/4") of section i is given by (excluding downwash)

= - p_ug (s ) Lhe - ‘3}’5 (501} o, (56)
11 2 \Pla)y 373, 72 \542a); %1 >
The moment on section i is (excluding downwash)
UP
My = = ( Cma) Uo (57)
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Therefore it is possible to write

!1?;1\ 3, 0 o 0 =b“ 0 o7 fn3,
0 e oo b o||n
1'11;2 2o I 22 %2
| . .
I
. | . D .
n 0 o | O O . Drk| |B3
i O SR . Y
M, 0 o ¢ ja, o ol s
. . | .
|
%y o 0o . . . 0 Io‘ R L Y

where the terms in thic c5vere matrix are those comprising [R] and are given by

oUZ

8
3y = - T(Scla)iU; %15
o5
big = - T(Sclu)i 814 (59)
ciJ = 0
[.'-U2 el s
ugy = -TO(S 5 Cmé)iﬁ—o- 513
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where 813 is thc Kronecker & (&8 =1 for i = §; 8 = 0 for 4 £ j), and the ovher
symbols are standard aerodynamic symbols.

The physical coordinates on the right side of Eq 58 can te written

{M/u} . [??l‘.‘]{;} (60)
0 o

Therefore Eq 54 becomes

a : b 03,‘
= tesserevrns S 6
{%l} R J{s} (61)

and utilizing a compatible partitioning of [0]T, Eq 31 can be expressed ac

3 (2-force at c.p.|
{Fab = [T °'T]{ { (62)
-{moment
Therefore,
a + b [|e
I Y RN : [
)y = ] o O feeeerrnenas s 6
{Fa} [1/u- ]c;d %+ leh (63)
or in the terms desired here,
a b |[esn,
]l = [oF :¢-T]—.....:..... L2/ 6l
(Fe] [1/1;. e o (64)

where Eﬁa is the matrix of mode deflections of the k-chord points

E@ﬂ is the waLiix . moGe oiipes of i rigid serodynamic chords,
i.e., @p = (d/dx)@., which is constan* along a riyxid chord

Expanding Eq 64 for the zero downwash case yields

red = [ovpd®lal 5] + (99 p0 3 0] + [o]7] [o) (¢



The idth element of the [Fg] is round vy adding the 1Jth elements from each of
the three components.

Blosnly, = -alsow), o 9, (66)
. T ]

[, ! [a] [°3/).] iy - -% q(SCL‘")k T %, /hiq)’% /i) (67)
[0e,, = -alscr,), o (66)

T ' [
CYNRDICY IR afser,) %, %% (69)

] 02 S b
[d] [0 ].‘.J = q(S z cmé)i Uy P14 (70)
07" ey, - Tafe < ong) 1 iy (1)
Thus,

(12)

2
')UO Se Cmé) t + u.ls '
Pni®nj)® + Uo\*Cla) %o, /hiq’nj

By © 72 ; ([SCLu]ann] iz (T

where the summation is over the n aerodynamic surfaces.

For situations involving downwash, ng 3 includes terms involving off-diagonal
elements of a4y and bij {Eq 55). These added terms are shown in one version
the f:.nal equations of motion, Eq T73.

D. FINAL FQUATIONS OF MOTION

With all the important elements now in hand, the final desired equations of
motion can be formulated. To achieve a form consistent with acronautical
stability and control usage requires application of the |w| trunsformation

metrix (Eq % and 35), truuslerring all aerodysamic terms, except iaputs, to the
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left side, and nondimensionalizing by dividing each equation by the appropriate
inertial quantity. Note that the mode shapes are normalized so that the general-
ized mass for each elastic mode is unity. Doing this Tor the case where only
two flexible modes are included, and where downwash from the first aerodynamic
surface affects the angle of attack of the fourth aerodynamic surface, results

in Eq 73, vwhici utilizes the following identities:

Pt 1 rigid-body translation imparts equal tranclation
k to all aerodynamic surfaces
q%1 = 0 rigid-body translation imparts no rotetion to

aerodynamic surfaces

P2 = 1nk rigid-body rotation imparts translation propor-

k tional to the distance from the center of rotation
(1, is the distance from the airframe center of
gravity to the k-chord of the nth aerodynamic
surface, positive aft)

!
-

rigid-body rotation imparts equal rotation to all
serodynamlc surfaces

Pn2

It should be noted that no aeroelastic correction, Dﬂ, has yet been applied
to Eq 73 and that to do so, in literal terms, would be a jractical impossibility.
Equetion T3 is thus mainly illustrative of the form assumed by the various coeffi-
cients, which in an actual case would be modified by varying aeroelastic correc-
tion factors. By assigning a symbol (i.e., a stability derivative) to each of
the terms (including the aeroelastic correction), Eq 73 cen be simplified end
extended to the general situation where an arbitrary number of flexible degrees
of freedom are included, as in Eq T4, the final set of ¢ wmations of motion.

27




SECTION IIX

FLEXIBLE ATIRFRAME APPROXIMATE TRANSFER FUNCTIONS

The forms for the longitudinal transfer functions of a rigid airframe are
well understood, and a summary of these forms may be found in Ref. 2. The addi-
tion of flexible degrees of freedom to e system has generally been treated to &
lesser degree, but the forms for the transfer functions are nonetheless also
well established. 1In general, the addition of each flexible mode will result
in the addition of a pair of lightly damped roots to the numerator and denomi-
nator of each transfer function. Table I summarizes the forms expected for
situations where two, one, or no elastic degrees of freedom are included in the
equations, and forward speed is assumed constant.

-In the current study, each of the transfer function factors shown in Table I
was approximated by a limited number of terms involving directly the stability
derlvatives appearing in the equations of motion (Eq Th). Trese direct relation-
ships allow the effects of parameter changes to be predicted with a reasonable
degree of confidence without actuslly recalculating the transfer function.

A. DISCUSSION OF METHODS OF DERIVATION

Basically, the derivation of approximate transfer function factors involves
determining the terms which are important for each airframe configuration con-
sidered. This is done by substituting a typical set of numerical values for
speed, altitude, etc., into the equations, and then neglcctir. the small terms.
In doing this, it is assumed implicitly that moderate changes iu the parameters
will not affect the segregation of small and large texrms; that is, small terms
remain smell over g reasonable range of parametsr variation. An exception to
this was found in Configuration 4, where control reversal was noted for dynamic
pressures of 20 poi.

Appendix B contains detailed descriptions of the twr methods which were used
to determine literal approximate factors for eoch of the configurations consid-
ered in the current study. Although the description of the first method con-
siders the case of factoring a transfer function denominstor, the technique used
ray be applied to numerators as w=zll.

28




TABLE T

SUMMARY OF TRANSFER FUNCTION FACTORED FORMS

RIGID AIRIRAME FIRST ELASTIC MODE SECOND ELASTIC MODE

|
1

E2 * (tw)ges + “gg

|
SE2 + (2§u>)sps + wgg: E2 + (2gw)1es + wf;l

|
il

Ee + (2§(.o)w1s + uﬁ] E2 + (agw)w?s + af;l

A§5sl52+(2§w)§31s + @3] IEE + (agu))gsas + mg}a

et

hgys Ee - (2§w)eh1s + wﬁzﬂ

[2 + (2§ /ghas + 0 1‘;}

|
I
|
I
!
!
|
l
|
|
|
!
|
|
l
l
1
|
|

!
|
|
|
|
|
|
|
|
|
|
|
!
!
|
E2+(2gm)es+u%] I E+(agm)es+u%:]
1 1 I , 2 2
l
L
|
|
|
l
!
i
|
|
|
|
|

|
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B. APPROXIMATE FACTORS

The approximate factors for the denominator and numerators for cach of the
three configurations are presented in Tables II through VII. Inspection cf
these tables reveals that the transfer function factors for flexible airframes
contain the rigid airframe factors derived in Ref. 2 (with aerocelastic correc-
tions) along with tne elastic-mode factors. It is noted that the literal
factors for Configurations 2 and 3 are quite similar, end in some cases, are
actnually identical. The results for Configuration %, however, are quite
different.

Rather than including a list of validity conditions for each set of factors,
it is suggested that the applicability of the approximations be determined by
finding the exact numerical factors for a nominal case, and comparing them with
the numbers ottained by using the approximate formulas. The reason for suggest-
ing this approach is quite simple: the alternative of calculating the required
validity conditions {those in Appendix B are just the start) would be unreason-
ably lengthy and complicated. It is therefore impractical and unnecessary to
present a list of validity conditions. The justification for the method suggested
lies in the assumption that moderate changes in parameters from the nomingl values
will not affect the segregation of large and small terms (except for Configura-
tion 4).

C. ADEQUACY OF ONE- AND TWO-ELASTIC-MODE REPRESENTATIONS

Regardless of the validity of the approximations, there i: ¢till a basic
question as to the number of modes required to adequately represent the system(s)
under study. Tais subject was investigated in Ref. 1 for the three cases treated
here and the results of this investigation are summarized below.

~

Configurations £ uald 2 vove shown to be accurately represented with only cne
or two flexible modes, the frequency response curv: being accurate /as determined
by comparison with s five-elastic-mode case) up to the characteristic frequency
of the lnst flexible mode included. However, Configuration 4 was shown to require
considerably more flexible modes for an accurate representation. In an effort to
obtain some usable data, Configuration 4 was invcstigated at several conditions
o8 reduced dynamic pressures lerrer than those studied in Ref. 1. These lower
press ves oend o0 miaimize the dynamic effects of the higher-frequency modes, as
indicated by the small changes which occurred in th- exact factors for tiie

30




TABLE II
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TABLE IV

TRANSFER FUNCTION APPROXIMATE FACTORS
CONFIGURATYON L
3 MODES

B - pfoom - (of - B, IE [UOM%F%T /2
(2tw)gy = By - Mg

do o 3o (6 my)] [ra]

A, = %
o S%
Ty Zg

Ag = Mg .
- 3 Z;
e L B )
TG) e [(w% - F ) + .y 3_5.
3§3 %3 M5

33




TABLE V
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TABLE V CONCLUDED
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TRANSFER FUNCTION APPROXIMATE FACTORS
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MABLE VI CONCLUDED
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TABLE ViI

TRANSFER FUNCTION APPROXIMATE FACTORS
CONFIGURATION L4

4 MODES
1/2
2 . 2
% ¢ (8- F3§5) ! [(uﬁ - Fug) - Uon]
(Ega))sp = "Zw
1/2
2 .+ 1/2 2
e * 35 F5§3) ) [(‘”“  Fug,) - °M"]
(2;(1)) = - Py, = Fll».
le Zw 5§3 gl}
2 . 1- 2
fe = - 5lh - F5;5) ¥ [(“’u - Fl&gu) - Uon:I
(2§0>)2e -y - Mg
A, = Zy
2. U
Ty 25
F
6
F F - M§
& ° > [ ), T Tk Mg
G = (u)5 - F3g) + M§3 Mg - Fh% 5 F58
(uﬁ B Fl‘&u) B (w5 F3§3) - M§5 Tﬁ'
(2§“’)w1 Approximation not found
F b 325.
0{2’ = (uae 7 3 . . 3§l¥ Lgk k
2 ¥ “t / * 3 =
u 5[((1:,?-1«‘1}5) N (wg' 953) ’Msj“;f
F38
Fz Py, - Mg, Fy
(2te)y, = By Sy 52 YV Mg




TABLE VII CONCLUDED
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three- and four-mode transfer functions. The range of dynamic pressures for
which the one- or two-elastic-mode representation is valid (regardless of the
validity of the approximate factors) is thus strongly limited for this one coa-
figuration. Care should be exerciced If this type of configuration is to be
represented with only o few ot its normal modes.

D. NUMERICAL COMPARISONS OF EXACT AND APPROXIMATE FACTORS

The excellent agreement between the approximate and the exact factors of
Configurations 2 and 3 indicates that the approximation formulas for these
configurations can be expected to remain valid for extreme ranges in dynamic
pressure. However, the approximation formulas for Configuration 4 were not
valid when the dynamic pressure was extended to 20 psi. Thus, those approxima-
tions should be used cautiously when conditions of high dynamic pressures ere
investigeted.
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SECTION IV

SINGLE SENSOR CONTROL LOOP SYSTEMS

A. INTRODUCTION

Control of the longitudinal axis in general, implies control of the short
period. Accordingly, the closed-loop bandwidth, or equivalently the open-loop
crosscver frequency, must be roughly equal to or greater than the short.period
frequency. When flexibility effects are present such crossovers can sometimes
lead to closed-loop instabilities because of structural "coupling" excited by
the autopilot. Such incipient instabilities can easily be investigated by
Bode analysis, and can in general be avoided.

Since the output quantity fed back to the controller sensec all components
of motion, rigid-body as well as elastic (unless filtered), the nature of the
complete open-loop transfer function can often be drastically changed by a change
in sensor location. Thus, whereas for a given sensor location it may be impossible
to cross over near the short-period frequency without appreciable excitation of an
elastic mode, a slight shift in sensor location may permit reasonable closures.

Both the general formulation- of the output quantity as a function of sensor
location and the process of selecting a “"proper" location are discussed below,
with specific reference to the use of vertical gyro feedtack loops.

B. SENSOR. OUTPUT

If the four-mode perturbation-equations involve the vertical displacement, h,
the pitch angle, 6, and the first two elastic modes, §3 and &), then the air-
frame transfer functions are h/d, 6/6, £3/5, and £),/6. The rigid-body degrees
of freedom ave h and 6, while §3 and £, represent the first two elastic degrees
of freedom.

The deflection at any poini i along the fuselage reference line will be

Yi = Puh H0500 + 95585 + 958, (13)

™is 31ope, or pitch angle measured, for example, by a vertical gyro at any




roint i is found by differentiation:

- (Y
b = (dx)i
APy 49 APy, d9y),
= i h + ™ 6+ I Ez + ™ &y
= @iyh + 00 + @fsts + O, (76)
But for the rigid-body modes, (pi,l = 0
: (17)
P2 =
Thus, 8 = 6+(pi5§5 +q’:'il+§l+ (78)

Because the sensor will detect the total physical motion, the .ransfer function
which must be considered is

Lt L&
= fros oy (19)

o] @

Following the transfer function factored forms given in Table I,

8 _ Yo
5 ~ A
N
5 . 33
5 ° & (o)
b Ny
w T A
o5 N o, Ny o g
Therefore, T T Rtz 0y R (81)
For convenience, this can be written in a slightly different form:
i N N
0 £y |N
,._i.= 1+Q)‘ .éé-;-wg __lf.l._e
) 13 Ny ik Ngla (82)
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The sensed motion is thus the mean centerline motion () modified by the
bracketed factor of Eq 82. The mean centerline transfer function is, itself,
different from the rigid-body transfer function obtained when the elastic modes

are neglected. The difference is apparent from the following equations (et
Table I).

Rigid Airfraun-

1
A +
[ 4 (s Taz)

= (83)
5[82 + (2¢w) sps * ufép]
Elastic Airframe (Two Elasiic Modes)
Ag (s + Elg) [32 + (2tw) ols * w%l][sz + (2tw) 6,° + 0%2]
[ (8u)

) s[s2 + (2§w)sps+u)§p][se + (2w)y s+ w?e] [52 + (2bw) 5 5 + mge]

The addition of two elastic modes has added two pairs of second-order roots to
the numerator and denominater of the mean centerline response, 9/5. This is in
addition to the elastic inputs which are added to 6/5 as shown in Eq 79.

C. CLOSED-LOOP CONSIDERATIONS

Assuming lead equalization of the gyro output (Te-" i 1) end neglecting
actuator and sensor lags, the open-loop transfer function given by Eq 84 yields
a frequency response curve of the form shown in Fig. 4. The actual curve will
depend on the relative positions and degree of demping of each pair of complex
roots shown. Closing the loop in this case is quite simple, requiring only that
the zero db line inte~n-~.. b¢ aurlitude curve at a frequency in the neighbor-
hood of wgp and yet not intersect either of the higber-frequency Ypeaks." (Servo
lags, unimportant at short period, will reduce the phase margin at higher freg: .n-
cles.) Such a closure would be impossible if the 6/8 frequency response curve
were of the form shown in Fig. 5 where ane is assumed lower than wg, (and is very
1lightly damped). For this latter case, crossover near Wsp would result irn

Instupiie, ¥ near oy ..
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If the 6/6 response is favorable, as shown in Fig. 4, then the complete 01/
response can also be made favorable by minimizing the dynamics of the bracketed
term in Eq 82 (via the sensor location). If the 6/8 response is similer to that
shown in Fig. 5, however, then the sensor should be located so the dynamics of
the bracketed term reshape 6;/5 to obtain a more desirable form.

D. OPTIMUM SEK.JR LOCATION

Methods for locating the sénsor to achieve desirable results for the two
postulated situations will now be described. In the first case the sum of
qi3N§5/Ne and ¢ihNg+/N9 will be held approximately constant over the frequency
range of interest. Equation 82 siicws that under these circumstances 91/8 will
be equal to 9/6 with & gain change. In the second case a sensor location will
be found which makes the combined dynamics of the terms in the brackets of Eq 82
Just cancel the elastic modes found in the mean centerline transfer function,

8/6 (Eq 84).

The example chiosen to demonstrate these methods is associated with the high
q condition (1197 psf) for Configuration 3. The transfer functions given in
Eq 82 can be obtained from Appendix D and are repeated below. (Note that the 6/6
transfer function will produce a frequency response simllar to that shown in
Fig. 4 and therefore is satisfactory.)

'2% = (8 +1.53) [32 +2(0.23)(12.8)s + 163][32 + 2(0.015)(26)s + 673:'

N
% = sEsa + 2(0.22) (15.1)s + 228] E;a + 2(0.39) (77.2)s + 5987):]
Ne (85)
Ki = s[62 + 2(0.17)(5.16)s + 26.7] [2 + 2(0.27) (13.1)s + 172]
A = sfs? 42 roy)s v w1 [2 0 0.22)(12.9)s + 166]

x [62 + 2(0.081)(29.7)s + 88k]

The process of locating the sensor to make the bracketed terms of Eq 82
independent of frequency is simplified by considering an alternate form.

-
1

" Ng w’ N.
i U P b A L
5 = l-'l + (Pi],_ Ng <| + {D_-!‘i; @l;) -A-—- (86)
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From Eq 86, it is obvious that mathematical cperations equivalent to closing two
loops will be performed, i.e., Qi3N§3/¢ihN§; must be added to 1.0 and the result
must be multiplied by’¢ik“!h/"9 and added to 1.0, The solid line in Fig. 6
shows the Bode (Jw) plot for the amplitude of AﬁhN§5/A§5N§h’ and Fig. 7 shows
the Bode (jw) plot for the amplitude of A@Nﬂ+/A§*N9. When the gain for the
first closure (qﬁ‘A53/¢iuAgu) is chosen, then the curve for 1 + ¢i3N§3/¢ihN§4
will resemble that shown by the deshed line in Fig. 6. This is easily seen by
noting that for any transfer function, G,

1+G G for G>>1

1 tor G«

1 +G

The closed-loop curve (corresponding to closing the first loop), is therefore
closely approximated by ¢i3N§5/¢ihN§h when that quantity is much greeter than
unity (zero d4b), and by the zero db line when ¢i5N§5/§ﬁuN§h is much less than
unity. For regions where G = 1, the closed-loop can most conveniently be plotted
using conventional Nichols charts.

Simultaneous inspection of the dashed line of Fig. 6 and the plet in Fig. 7
shows that the two curves have a mirror image resemblance. This is a result
of & judicious closure of the first loop (i.e., properly locating the zero d»
line in Fig. 6). Because these two curves represent quantities which are to be
multiplied (and thus their logerithmic, db, plots are to be sdded), the product
is seen to be relatively independent of frequency. T s kev point here is that
the gain of the first closure, ¢15A§3/¢ﬁuﬁgh, was chosen to appropriately locate
the zero db line in Fig. 6. The corresponding appropriate sensor location can
now be determined from Fig. 8, which gives the value of ¢£5A§3/qﬁuA§u as a func-
tion of fuselage station. Detalled numerical considerations show that the
sensor chould be ple3sd ot station 656 in order to make the value of

1
Ny [ P15 Ny
%y T\ o N
o\ 9y Ty

relatively independent of frequency. Closing the second loop is now trivial
bernust 4o corpecsonds o adlit a constant to 1.0.
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It is noted that the mirror-image effect requires that a zero of NQ‘/NQ and
a pole of N§3/N§h occur at the same frequency with the same damping. However,
this is always the case, becausc the zeros of the former are the poles of the
latter. This method will therefore always theoretically reduce ei/se to approx-
imately /6, (When only two elastic modes are considered).

For the second situation postulated, i.e., a €/ frequency response as shown
in Fig. 5, the dynamics of the elastic modes can be used to better shape the
sensed pitch response. (Note that no such modification is required for the
example picked.) Again, there are two closures involved (see Eq 86), with the
location of the zeros for the second closure clepending on the gain assoclatea
with the first closure. In turn, the gain is strictly dependent on the sensor
location (mode shapes).

If the zeros resulting from the two closures are to be placed in close
proximity to the elastic roots in A (Eq 85) with a resulting cancellation, the
following considerations apply: The roots of the first closure will be the
zeros for the second closure; one pair of these will be lightly damped and close
to 13 rad/sec for any value of gain, as may be seen by inspecting Fig. 9. Since
the roots of Ng also include a pair near 13 rad/sec, the final zeros (which-are
the roots of the second closure) will include a lightly demped pair at spproxi-
mately 13 rad/sec (see Fig. 10). This is true because a pole and zerc in close
proximity will always yield a root in that neighborhood for all values of gain
(provided the remaining poles and zeros are relatively far removed, as they are
in this case). Thus, for the example chosen the elestic poles of A at approxi-
mately 13 rad/sec will be cancelled for any sensor position selected. The
placement of the sensor can thus be made with the intention of producing a pair
of lightly damped zeros at approximstely the location of the second elastic
poies of 4, 29.7 rad/sec. The second closure has a pair of lightly damped .poles
at approximately 26 rad/sec. The locus of the roots emanating from these poles
must depart in the ALic.iiow inddaeted in Plg 10 if the locus is to include the
desired location (29.7 rad/sec) for the zeros. Tzz pales of vhe socond closnre
(being the Ng numerator) are not a function of sensor location; and of the four
zeros resulting from the first closure, two are essentially independent of sensor
location (che two lightly damped roots at approximately 13 rad/sec). Thus the
problem is reduced to closing the first loop so that among the resulting roots
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(which will be zeros fcr the second closure) there will be a complex pair of
zeros which yield the proper second-closure departure from the first-closure
poles at 26 rad/sec. Figure 10 shows the required location of these zeros
(cross-hatched area). There axe two possible ways of producing roots in the
croes-hatched area: the gain of the first closure, ¢i3Ag5/q&uA§h, must be either
positive or an extremely large negative number. The root locus for the first
closure is sh.Wn in Fig. 9. If the gain is positive, it must be large enough
to yleld roots greater than 29.7 rad/see. With this information, a number of
positive gains are tried until the zeros resulting from the first closure fall
in the desired position for the second closure. For the example chosen, the
roots of the first closure need to be driven all the way to the zeros. There-
fore, the sensor should be located at station 647 where the gain of the first
closure -takes on its largest value.

It is unfortunate that, for the example chosen, both methode result in
placing the sensor at a fuselage station where the gain of the first closure,
¢53A§5/¢ihA§h’ is changing quite rapidly. Any departu.e of the mode shapes from
those expected may not result in the required guin and hence not achieve the
desired flat response or the required cancellation of roots. The effects of
such perturbations on the system can easily be estimated by applying the Bode
techniques of Fig. 6 and 7. In.any event, regardless of the validity of the
examples chosen to illustrate the two approaches, the basic considerations
involved are generally applicable to the closed-loop analysis and synthesis of
flight control systems for flexible airframes. It is cspecially pertinent to
note that a fairly complete set of transfer func*ions {ir~luding those of the
coupled elastic modes themselves) is required for such analysis and synthesis
activities.
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SECTION V

RECOMMENDATIONS FOR FUTURE INVESTIGATIONS

The study leading to the results presented in this report has disclosed, or
nes investigated only partiaelly, several potential areas of research, including
the fcilowing:

1. the problem of finding the quasi-static aercelastic correction
for equations of motion which include a few elastic modes

2. the basic mechanics of mode intcraction, and an understanding
of what parameters can best be expected to provide an indicavion
of the degree of coupling present

3. -the poussibility of representing the motion of an elastic air-
frame with a simplified set of equations of motion

4. if the transfer function approximate factors are & function
of mode shape, what approximations can be made to adequately
approximate the required modes?

5. when and how can the approximetions developed in this study
best be utilized?

As indicated by the manipulations outlined and demonstrated in Appendix A,
any physical feeling for the meaning of [xoo] is completely lost in the maze
of relationships involved. This places the method in the category of being
completely unsuited for use in the practical calcwletion of approximate transfer
function factors. Nevertheless, the basiec feeling exists that in .ae way or
another, [xcoa'mmst ccrrospond %o "medificd elastic properties." That is,
the number éf elastic modes already included must give rise to a correction
of the basic static deflection properties; and the corrected properties (the
"residual stiffnesc") mnst in some way be connected with [Xoo]. These con-
nections have to be formed, and a physicelly seiistyiog pi.ture mmst be
drawvn before the process of obtaining simplified approximations to tThe aero-
elastic corrections can proceed.

The desirability of obtaining such epproximate corrections cannot be over-
emphasized. This stems basically from the fact thet if proceduvres akin to those
deseribed in Section II are required to esteablish proper aeroelastic corrections,
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then much of the impact of approximate transfer functions is lost, because

1. the time and the machine methods required to compute [Xoo]
might Just as well be used to compute exact transfer functions

2. the besic possible physical ingight which approximate transfer
functions can potentially yield will not have been realized.

A second major consideration is the phenomenon of coupling. Better under-
standing of coupling is required; as evidenced by the results presented here
on Configuration 3. In that instance, the equations proved to be weakly coupled,
even though it was expected that strong coupling would be present. The reason
for this is now know:: coupling of two modes is not necessarily indicated by
proximity of their frequencies. This is discussed in Ref. 8.

The equations of motion for flexible vehicles, including two rigid-body and
an arbitrary number of flexible degrees of freedom, arc given in their most
compact form by Eq Th.

The approximete transfer functions derived in this study are a direct in-
dicatinn, for the cases studied, of the relative importance of the various terms
in Eq T4. Unfortunately, as shown in Section III, all terms appear in one or
another of the various factors involved in the complete set of transfer functions.
Accordingly, the specification of the validity conditions for which the approxima-
tions apply becomes exeedingly complicated. Because all the parameters remain
important (depending on the particular root involved), the most efficient way,
currently, of determining the applicability of the approximations is to compute
an "exact" check case. If the approximations are valid - snown by this com-
parison, they can be epplied to gein the desired insight into sources of dif-
ficulty, effects of changes, etc.

An alternative approach to approximete factorization is to write sets of

"simplified equations & ~otion." each set applicable to restricted-frequency
regions (e.g., Ref. 9). The sets of simplified equations and *we sets of
approximate factors are complementary ways of specifying the important contriu-
uting terms; both approaches will thenretically yield similar results for the
approximate transfer functions. Accordingly, the simplified equations can be
used to specify, hopefillly, more tractable validity conditions, and furthex t-
otk opproximate tranafes functions for ovher than control inputs (e.g.,

Jui gusts, as in Ref. §)}. For these reasons, the simplified equaticns are
highly desirable adjuncts to the approximate t-nnsfer function factors.

53




The approximate factors for the transfer functions or a flexible airframe
axre given in terms of such quantities as airplane stability derivatives and
mode deflections at various points on the sirframe. A great many reports and
papers deal with the subject of approximating such parameters, and many of
those concerned with stability derivatives are directly epplicable. The same
is not true of all meliuds of estimating mede deflections, most of which are
used only to establish an initial estimate for use in iterating to the exact
value. Because the iteration procedures rapidly converge, the initial estimates
need not be, and are not, very accurate. This is especially true of Galerkin's
iterution method, and the method of Stodola and Vianello, where the iteration is
continued until repeated iterations provide the same answer (Ref. 3). Other
methods, such as Rayleigh-Ritz, modified Rayleigh-Ritz, collocation, and colloca-
tion using station functions (Ref. 3), rely somewhat more heavily on the original
estimate if any accuracy is to be obtained. Thus, many techniques of varying
accuracy (directed at these latter methods) have been formulate to provide a
fairly reasonable estimate of the mode shape. Most of these, however, are
usually content with merely satisfying boundary conditions. The mportance of
selecting or developing such approximetions stems from the fact that fairly large
errors in mode shape may be tolerable for the purpose of computing epproximete
transfer function factors. The effect of mode shape error on- the accuracy of
the -approximate transfer functions is easily determined in a given case by
finding the changes in the factors caused by variations in the values of the
mode deflections.

It is desirable to epply the approximate transfer function fo:milas (Ref. 5)
to some actual aircraft or missiles to demonstrate their application and utility
on a tangible basis. Probably the most significant and useful results can be
obtained for vehicles that are currently in the preliminary design stage. The
information necessary Yor ihe z-~luation of the approximate factors is generelly
most available at that time, and the resulting analysis wouldd be usefnl to the
vehicle manufacturer, inasmuch as some insight would be provided- on the dominant
factors affecting the aireraft modes.

Many of these problems may be resolved in the completion of Contract No.
AF 33(657)-8374 which has recently been awarded specifically for study in ihese
arees.
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APPENDIX A

AEROELASTIC CORRECTIONS

A method has been derived in Ref. 1 wherein [xoo] can be calculated. It was
not considered neccasary to repeat that derivation in this report, but a summary
of the method and an example of ite use follow.

A. SUMMARY OF THE METHOD

To obtain the basic data required in these cquations, the system is restrained
at two points, and is then subjezted to a unit acceleration field, first in trans-

lation and then in rotation. The resulting physical deflections are partitioned
in matrix form as

9g trans |

,{ga trans} = qmtme (A1)

,{q“ot} ; :::: (a-2)

where the oubscripts a, g, and m derote acceleration.deflections, grounded coordi-
nates, and movable coordinates, respectively. These «cficaticns are used in the
calculation of [xf+oo] » Where

o] = fe] - PP

In Eq A-%, the columns of :[¢f] corresponé to the finite-frequency mode shapes
(those of interest as mentioned earlier); [Yq] represents the diagonmal [K + Mse)
matrix for the corresponding finite frequency stiffness and mess matrices; and
the elements of [Xpyo] are found by calculating partitions of [Xp4q] as folicws:
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rx(r+oo)sg : X(£4+0 em
Brsca] = |oervererrrntoreneenns (A-k)

x(f+oo g X(£4c0 )om

[x(f+oo )88] ; +[“’or] [MOJ B [°0]T[m] [{qa trans}{% rot}] [M0] ! [“’or]T (A-5)

[x(mJD )mg] = -[{qm trans H{dn rot}] [Ma]_1 ["'q;]T

* [oa] B " [l Tl [t ransh 50 st ] o] 4
freore] + [
oo = [6] - ool e ol "

+ [220) [%0g] " [K(es00)ea] * [Fesc01mg] [’"og]rl [oo]®  a-®)

where [Zo] is the influence coefficient matrix uf the sysvem when restrained at
the two points ;- and where [%m] and [‘bog] are found by partitioning the zero-
frequency modal matrix into the elements corresponding to the restrained and
unrestrained coordinates,

[d?o:l; = .o -‘. .o .J (A-9)

Also, D&O] is the zero-frequency modal. mass matrix

[nﬂ is the mass metrix of the physical system (defined previously)
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B. EXEMPLARY DEVELOPMENT

The three masses shown in Fig. A-1 are rigidly attached to a weightless beam
of length 21:

Y, Y, Vs
! orl B
m, N m,, 1, m,

1

Figure A-1. Mechanical Model

The rotational inertia of the first and third masses in Fig. A-1 is negligible,
and the rotational inertia of the second mass is Io. All deflecilons are measured
inertially, and are positive as indicated. The angle 6 is the inertial rotation
of mass two, and is also posiitive as shown. Mass two is in the center of the beam
which has a constant EI. The masses are assumed to be equal, m.

With this information, it will be possible to write the system equations of
motion utilizing lagrange's equation:

d (oL} 6 D
at (&z; v, T Qr (A-10)

ct

where L = T7-U

T = the kinutviv vner_ 7 of Ui syctem

U = the potential energy of the system

D = the damping energy of the system

Q. = the generalized force on the rth degree of freedom-

q, = the rth degrec of freedom

Follow'ng tuese definiticus {an i .ression for the potential energy for the beams
is derived in Ref. 3),
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=
u
ol
&,
-

152,102 1
+pudp rpw g Ip#

EI _\2
"g'ﬁ‘(y‘l‘ye‘lv)
EIL 2
335 Wy v - 20) (a-11)

It is not necessary to consider any external forces for the purposes of this
example; thus, Q, will be zero. Substituting in Lagrange's equation yields

. EI EL
- 3= - -10) -~ 3= - +16) = O
mip - 333 (yy - ¥ ) -3 % (v3 - ¥ )
o EI EL
120' 3'1_2'(3’1 "ye"le) "‘5'1—2'()'3"3!2-16)* = 0
(A-12)
s b BEE (yx -y, +10) = O
3¥2 3 Vs Y
mh + 35 (y -yp - 20) = 0
- 13
Equations A-12 can be put into matrix form as indicated in Section II:
[ms? + J{a} = {a} (a-13)
where
Y2
e
fab =1
)
¥4
m 0 0 0
0 0 m 0
LO o o m




 EI EI BT |
== 0 -5 = -z 2
© 13 13 3 13
. EI EI EI
° ST 2% g
b - ET ET EI
- - am— — o
3 13 > 12 13
EL EL ET
- - o} ==
> 15 12 13

The modal matrix can now be found:

1 0 -2 [0}
1 ml
- 0 -2 =
o] = 1 T2 (A-1k)

If the degrees of freedom of interest were limited to, for example, the two rigid-
body modes and just one elastic mode, then, from Section II,

- O

[e]

-y
]
—_

r 1
' Ay o
-

it

(A-15)




The [Y] matrix can alsc be

calenlated a5 described in Section II, and

Zmg? 0 0 0
I
o lom+ —2-)32 0 0
22
] = . - (A-106)
< 0
0 0 6ms= + 5k 13
2,2 I5\2
0 0 0 (2m+l+&)52 +6£I-(2m +-§)
Iz 128 1
2
L -
Following Section II,
F 3|ns2 0
= I
[ < |0 (e
| X
[ EL
Y = 6ms® + S5k = A-1T.
[ f] i > 15] (A1)
v T . m212\ o EIf2 1 212!
[YmJ = (2m+ 4—12—2—)8 + 3 T(I—e' +m—l—2-)(2m+ Ll-Ta—-)
From this information, [xoo] can be calculated direc.l, fiom Eq UT:
. ; -1
o] = o] Bl L oe]” )
- =0
i 0 0 0
212 ;
) y B2 o Lk on
2 15 Io Iz
.2
[xoo] = - —3 o ml (A-18)
| 2 2 T 1 -1
61EI|2m + —-) 2
-\ 12
ml
0 -2 = -1 1
I T2 '
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As deseribed in Eq A-1 through A-9, [Xm] ¢an also be calculated without the
knowledge of [%:)]'
- With the system restrained in transletion, and rotation at the center of
gravity (mass two):

m>
3EL

{% trans}

)
]
3
o
——
L}

(4-19)

-
—
[ng
pett

[ <1, .2
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Equation A-5 yilelds

i ) ' 0 0 0]
1
1 ol = 10 1 1
3m 0 0 12 0 0
X =
[(fﬂn)se] °1i° 11 0‘1-1100,,,0
2m+-—2
! 12 | 0 0 0 m
0 0
0 0 ]
—35 0 1 0
A-20
X w3 w3, 2 |lo 2 (a-20)
EI  ~ 3EL |l I
m 12
m’ w3
3EL  3EL
b -
e -'
o}of 0
= 2 A-21
[x(,ﬁw)gg] . 211, i (a-21)
I
3EI(2m+-,—§)
A 1
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Equation A-6 yields

m?  m3 | o
3BT 551 || =
X ] = .
Proreorme] = 05 s o 1
ZEI BRI o 1
n 4 =2
12
- -
1
1l ==
%
+
11 0
) 0
1
0 0 L
= 0
X Iwmd w3, _o
3EL 3BT 2
o o—
2
pld md 1
| 3BT 3EL
[ 13 nl ]
27EL L 19_\2
B O T L e
: U=y
X ] - |
[ (£+o mg 3 nTp
~ 2TEI - T2
3EI(2m + -fg)
L ll-
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From Eq A-T,
- 3
~ 27BEI

[x(f+oo )gm] = nly

D —————

2
3EI(2m N —2)
lf-

Equation A-8 yields

(A-24)

13
= °
[x(,.f'-#m)nun] = 13 -
0 3L
"1 o0qrt1 i 1
X +
o 1JL1 1 1
.- .
27EL
3EI(2m+
+
" 2}131 -
5EI(2m+-—-
L.

(a-25)
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2.3 7
53 2uf1’ + Zaily _md 20213 + 2mil,
27EL Io\ Z7EL o
3EI(2m + —2) 3EI(2m + —2)
1 1
X .= (4-26)
[ (g4 )""“] yi3  2nf1d + em, 23 2nL + enll,
- 57RT T o2 27ET _I'a“é
3BI (2m + —) 3EI (2m + -—)
| 12 12 -
Now [X(f+oo)] can be constructed from Eq A-21, A-23, A-2%, und A-26:
iero] -
217 o L I ]
27EL 2781 27EL
o anfl mlp i nlp
v o T2
3EI(2m + —,) 5EI(2m + —) 3EI (2m + i)
12 , 12 1
13 mip 517 2P+ 2ml, 13 . 2n?13 + 2mlI, (a-27)
" 27EL T2 27EL 2 27EL 1o\
- -—_ ZRI(2m + —3
ZEI (2m + 12) 3EI(2m + 12 7 (m 12)
13 mIp 3 aif1d 4 2, 53 2P+ amip
T2EL T 2 T 27FI 2 27L1 2
k 3R (2n + 12) k 3ET (Qm + 12) 3BT (2m + 52\)
(| — o =
i 12 12 NAY-* J

Refore solving for [XOO] from Eq A-3, it will be necessary to find [Xf] f'rom
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Yy 0 -2 -2
1> o o o o
[xf] TSEI o o 1 g (a-29)
2 0 1 1
Subtracting Eq A-29 from Eq A-27,
To 0 0 0 i
0 2n?1 nlp ) nlp
2 ) 2
3ET (2m * Eg) 3EI(2m + 3'3) 3BT (2m + 1_2)
12 12 12
[x ] e mlp 13 2nf) + 2mlly 33 . 2r15 + 2mllp
© ' Ip\°  6EI Io\2 6ET 15\2
EI (2m + —) 3EI (2m + —") 3EI (2m + —)
5 ( 12 2) 2
| o nl P, 2P0 s ety 1 2013 + ullp
I2 6L Iei;p 6e I
3ET (Qm + -5) 3EI(2m = 3BT (211‘. s
Eb 1 l L + -l
(A-30)
Algebraic manipulation yieids
fo 0 0 0 ]
R o 2m21 m.l.2 . m12
2 IonE ~ 2
i 2 ip
3EI (Qm + --) 5EI,(2m + F) 3EI(2m + —5)
- _ ~ 2
: wl 15 I
[xm] = 1o / ’21 2 — - 2 (a-31)
: Bap dem _'é\ A11a1"(2m + —2\ 61EL (2m + —‘)
1/ \ 27 ) \
nlp 1 15
1o - T2 - 02 5 2
3EI (on + —2 G1EL(2m + —2 5\
L 12 -
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Equation A-31 reduces to

i) ) 0 o ]
4n212 om 2ml
° 12 I I
13 2
[x°°] i R 2m (A-32)
o 0 sn 1 -1
61EI (2m + -é) I
1
2ml
o -1 - 1

The result obtained in Eg A-32-proves to be identical to the result obtain in
Eq £-18, although no use has been made of the fourth-mode shape.
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AFPENDIX B
ANALYTICAL METHODS OF APPROXIMATE FACTORIZATION

A. CHARACTERISTIC POLYNOMIALS OF LIGHTLY COUPLED SYSTEMS

Approximate factors of a characteristic polynomial are found directly from
the matrix of coefficients in the equations of motion, rather than by expending
the determinant of ccefficients, and then factoring the resulting polynomial.

The technique employed here involves determining those corrections that must be
applied to a crude first-spproximation to the factors. This method is perticu-
larly suitable to those cases where the diagonal elements of the determinant of
coefficients are the major contributors to the characteristic polynomial. The
case to be considered here is that of a 3-degree-of-freedom system having a deter-
minant of coefficients of the following form:

-8+ &y a2 by38 + 813
als) = 8 s + 85 bozs + ap3 (B-1)
a31 332 52 + b335 + a33

where-A(s) is the characteristic -polynomial, and 8y 5 and by 4 are

real constants
This could represent an airframe with two rigid-body degrees of freedom and one
elastic structural modé (as per Eq T4). A(s) can be expau 2 xbout the third
colwnn, giving

A(s) = P(s) + Ky{s) + Ry(s) (B-2)
2 5 + &g a2 |
where Ps) - -+ hoxa + azs)
"1 8+ 202l
] s + a-” 8.12
9.51 8.32
an1 s+ agp
and Hp(s) = (b138 + a13)
a31 8.32
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P(s) can also be written

P(s) (2 + Bs + ¥2) (6% + as + %)

B a (ar B)sd (B + R+ ap)e® + (w2 + pd)s + B2 (B-3)

s+ sS4+ s+ Ds + E

vhere by direct comparison

B = atf
cC = 2+ ye + of
D = oy + B (34
E = x5
and by comparison with Eq B-2,
2 = 811822 - 212821
@ = 817 * 8pp
. (8-5)
y- = 833
p = b33

The complete A(s) is also of the form of Eq B-3, but with s¥ightly modified fac-
tors and polynomiel coefficients due to the added R.(s) and Ry(s;. pecause the
modified polynomial coefficients are directly aveilusle from Ez B-2, it is perti-
nent to relate increments in the coefficients to increments in the factors. Then
the approximate factors of A(s) will be the factors of P(s) as modified by these
increments. Proceeding aiLuug hese lines by taking differentials in Eq B-4,

dB = do+ dp

d¢ = @ + Qy2 + odp + Bda

aAD = ody? + yPdo + Bax® + x°ap (2-6)
E = PP+ YPakf
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Because Rl(s) + Ry(8) 18 of second depree, dB = 0, whereby

da = -dp (B-7)
Substituting Eq B-7 into Eq B-6,
ac = ax® + ay2 + (o - B)aB (3-8)
W = ady® + paxe + (x2 - y2)ap (B-9)
dE = x2ay® + yPax® (B-10)

Eliminating df by combining Eq B-8 and B-9 gives

& - axf - a2 | a0 - ady? - pax® (3-11)
o-B -

Solving Eq B-10 for dx2,

axe = .@_;;axﬁf. (8-12)

Substituting Bq B-12 into Eq B-11,

“ -(m——ﬁe—dﬁ)-w‘e ) w-qdya-ﬁ(g-yfd ) (8-13)
o-B T %P W2

Then, solving Eq B-13 for dy2,

a2 - P #2) (yP4C - aB) + (o - B)(y2dD - 5dE) (B-14)

e .19}27+ (@ - May? - pf)

By solving Eq B-10 for dy‘e, and by substituting the result into Eq B-11, a sluidar
expression for dx2 can be found:

ol o (PP - Bd) + (a- p)(atE - xPav) (515
(2 - 2% 4 (@ - B)(a? - BxR)
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Expressing Eq B-14 and B-15 in terms of finite differentials (rather then infin-
itesimal), and collecting terms,

2o ple-[o2 - Ao [2e-plo

Axe
2 - B2+ (a- B)(a? - B

AR - 2 - 2+ ota - e+ [202 - B)ac + [Pl - o)
i (2 - A"+ (a- B aw? - p2)

(B-17)

Considering that Eq B-1 is representative of an airframe with one elastic
mode included in the equations of mobtion, A(s), in terms of the factored forms
of Table I, would be given by

As) = [+ (2tolgys + oB)[6® + (2tahes + F) (5-18)
h ]
where wgp i} x2 . Axe
(Q_f,a))sp - o+ Ay
‘”?e = ¥+ Aye
(250))]0 = B’+ Aﬁ

Therefore, using Eq B-5, B-16, and B-17, the approximations to the characteristic
frequencies are given in terms of the matrix elements by

!rn'-;z - 8.118.92 + 812&21 + (a” + a22)(a11+a22-b33)]AE

"[(a1 1822 = 812821) (8 +823-b53)]AD

2 .
Ogp = 211822 - 8yp8py *

{
% 'i[(aﬂaez - 81082 )(a33 - ajj8pp + ayp8p )]AC
( (835 - 817800 + 8928p1)2

( )
(* (ayy + agp - b3s) [(311 t appless - 3z(ay480 - 88 ]S

(8-19)
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r )
“|8%3 - 2n%22 t 882y * bz3(ayq + aps - b73:|AE

Hegzlegs - a11say + eqome)ja

\ +lazs(agy + - bs-)|AD
g & ag Loslen * 22z - 0] (-20)
(8.53 - 8y180p + 3129‘21)
+(a” + 822 - b55) [('a” + &22)&53 - b55(8.118.22 - alaamn
AC = -8.511)13 - 8.32b25
AD = -84 5&31 ~ 893830 + azx (312b23 - a22b1 5) + 8.52(821b13 - 8.”b25) (8-21)

AE = 8y 3(9.2]&52 - 9.22&51) - a23(a”a32 - a12a51,)

Equations B-19 and B-20 represent first-order corrccted velues for the squares of
the short-period and first elastic-mode frequencies when R1(s) and Re(s) are added
to P(s) to give A(s) (Eq B-2). However, because Eq B=19 and B-20 are very un-
wieldy, it is desirable to simplify the two corrections. Subject to a reasonable
set of velidity conditions, some relatively simple relations cen be found. Con-
nider the following:

Dividing Eq B-14 by Eq B-15 gives

&2 (5% - %) (aE - y24c) - (o - B) (B - 724D) (B-22)
o8 (32 - 2B)(E - #2AC) + (o - B)(dE - ¥%D)
Dividing numerator and. denominstor by (y2 - x2)(4E - %24C),
du - Youy RJE - y2aD
dy2 = (G.E - xedc) (y2 ( '2'"‘) (B PN
~dx? s ,,f’ch-de— e
' (F A )

This can be greatly simplified by meking the following assumptions {which hen.
me: orcawved to be true in meny instances):

y2aC << dE
%24¢ << dE

>




\

Equaticn B-23 then becomes 2 5
"l - —
2 ! *'(’??‘ )(p -y
dy . __\y~ -
-d12 1 + -&‘__ - 12
y2 - ’

The following assumpticns have also proven to be quite reasonable and will further

1=

1o

(B-2k4)

xwm xm
GEEE

reduce the complexity ~f the approximation:

Further, assune (—g'——"—%) (B -y %) <<
Yy -
-R dD
and (3'—-—'-'-—) (or, - x2 --) <1
- a&
whereby a? - -a y2 (B-25)
Substituting Eq B-25 into Eq B-10 gives
2 . . 4B
s = -dyg 2 = (B 26)
¥ - 52
Thus,
2 :. AE -
“ep = Sn1%22 - t12fa Y g T g e ¥ 8y 0 (B-27)
and-} 2 AE

u)le = 333 - 8.33 - 8.118,22 + 81,421 (3-28)

Equations B-27 and B-28 are the desired simplificetions of Eq B-19 end B-20.

The remaining task is to find corrections to the damping terms in Eq B-3.
Because the frequency corrections are now known, either Eq B~8 or En B-$ can be
solved directly for the #» lwmuur rorr~~+ions which {(Eq B-7) are simply of
opposite sign. Because of the relative magnitudes of the nuantities lavelved,
it is presumed that Eq B-9 will give a more accurate result than will Eq B-8;
accordingly,

P = -do = -2 *ygdlax;ﬂdxg (8-29)

Trensfc uiang back into the variables of interest, and replacing differentials with

finite djfferences,
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8D - (a7 * 8pp)y” - bz’

A . -30}
(ag‘-‘))sp = a1 eyt Az ~ 811830 + 81282 (5-20)
. A - (837 + agp)ay? - bz
(2lw)ye = b33 - ¥ (22
833 = 811822 *+ 818

where AD is given in Eq B-21 and A2 and Av2 are the correction terms in Eq B-19
and B-20 or in B-27 and 5-28.

It is now desirable 10 have a simpler expression for the damping correction.
Using Eq B-25 in Eq B-29 gives
. =dD - (o - B)ax?

dB = «do = B y2 _ xe (3'52)

Nov Eq B-26 can be substituted into Eq B-32, giving

@-B n
2o (Fe

dp = -da = L (B-33)
Yy - X
Therefore, Eq B-30 and B-31 can be written
8., + 8,4, = B
o (a53 1'1311322 * afzam) o
(2fw)gy 2 899 + 89p *+ = (B-34)
5P LU P33 - By18p * A 9o
and
AD+( 7a”+8.22-b35 )AE
833 = 8118p * 858

(2tw) = bz, -~ (B-35)
le 2 B33 = By18pp * 83y

The following is a summary of validity conditions which allow use of the
simple approximations given by Eq B-27, B-28, B-34, and B-35. If these velidity
conditions are not satisfied, then Eq B-19, B-20, B-30, and B-31 must be used;
in this case only the first validity conditior. listed below is necessary.

5




validity Conditions

1. The correction terms are =1l small (on a percent basis).

(8,1822 - 81282 )AC

<L and 75

<< 1

) a35AC
* AE

< 1

[ 21 *ee-b3 ] AD
> [333 Teems * 818l |0 T OB

and

: 814 + Bop = D

: 11 22 33 AD

; - 8.+ 855 = (89800 = BinBag) || << 1
[335 - 8,820 * 9.12&21][ 1 22 11922 12721 AE]

The method described above is directly appliceble to the case where the
equstions of motion include 3 «:grees of freedom. If 4 degrees of freedom are
included, a similar technique can be used, but must be applied twice—once to
get approximate factors for the upper left 3 x 3 part of the 4 x b determinant,
énd once zgain to correct these factors.

B. APPROXIMATE FACTORS FOR HIGHLY COUPLED SYSTEMS

The fundementals of this method cen be summarized briefly ce follows. First,
the exact factors -(in numericsl texms) must be known for a case where the param-
eters in the equations of motion take on typical values. Then, approximate literal
factors (in terms of the polynomial zoefficients) are found by solving the simulta-
neous equatione which relate factors and polynomiel coefficients; in this process,
numerically small terms he.. 224 o We Sigi..ted.  fiaen, because the polynomial
coefficients are defined in terms of the stability derivuv.veu in the equawions
of motion, the approximate factors can also be expressed in these terms. A more
detalled description of this method is best presented in the form of a set of
instructions. Although a transfer function denominator Is considered in the
following set of instructions, the method is also applicable for finding numerator
factory:

i. obtain exact transfer function factors in numerical terms for a typical

set of paremeter values
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2. assume the denominator of the transfer function fectors as (e.g., for a
b sixlh-order denominator)

i
86 + Bs5 + C8  + Ds3 + Be2 + Fs+ G = [}2 + (qugsps + ugp

x [sa + (2§u))1es + u)‘?e]
x [52 + (2bw)pes + “ge]

3. expand the factors in Stcp 2, and match ccefficients of s, giving six
equations in six unknowns to solve

4, <throw away those terms in Step 3 that are very small (by knowing exact
nunbers)

5. solve simplified equations (from Step 4) for (2§aQsp, ugp, etc., in terms
of B, C, D, E, F, and G. This gives approximate frequency and damping
terms as functlions of polynomiel coefficients

6. expand the determinant of coefficients in the equations of motion in
literal terms

7. match coefficients of s from Step 6 with these in the polynomial on the
left side of the equation in Step 2

8. +throw away terms that are very small -(by k-wowing exact numbers) in Step T.
This gives approximate expressions fcr the polynomial coefficients in

terms of coefficients in the equations of motion

9. combine results of Steps 5 and 8 to get approrzimate expressions for fre-
quency and damping terms as functions of coefficients in the equations of
motion.

The applicability of - Lis e  jo ~~=ingent .2 one being able to solve the cqua-
tions in Step 5; these equations proved to be solvghi: ir all cases crnsidered in
this study.
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APPENDIX C
DESCRIPTION OF CONFIGURATIONS

The data presented in this appendix describe the vehicles and the flight
conditions which were investigated. No data are shown for Configuration 1
because the study of that vehicle was discontinued early in the project.

The intformation necessary for the calculation of the aerodynamic matrices
may be found in Table C-I (the aerodynamic parameters), and Table C-VIII (the
flight conditions). Tables C-II, C-IIT, and C-IV present the mode shapes and
slopes for the three configurations, and Tables C-V, C-VI, and C-VII present the
[X(f.,.m )] metrices. A profile view of each airframe with the control surfaces
shown may be found in Fig. C-4 through C-8.
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.

First Elastic Mode:
| w3=8 94 rad/sec
i
|

Second: ‘Elastic:-Mode:

Wy=2/.45 rad/sec ~

FIGURE O=F ELASTIC MODES FOR: ‘CONFIGURATION: 2
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TABLE C-11

MODE CHADES AND FREQUENCIES
CONFIGURATION 2

MODE NO. 1 2 h

|\

FRRQUENCY, cps 0 0 1.i21 302

Mode Daflcctiong

Cannri 1.0 DY) -C 0241 0.046k

Wing l 00 '97 0000!“8 -0-0585

Mole Slopeo
Conard 0 1.0 0.0004 32 0.000252

Wing 0 1.0 -0.002198 0.000103

m




First Elastic Aos'2
Wz=7.53 rad/ssec

Second Elastic Mode
Wy=27.02 rad/sec

/ FIGURE C~2. ELASTIC MODES
FOR CONFIGURATION 3
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TABLY C-IIX

MODE GHAPES AND FREQUENCIZS
CONFIGURATION 5

MODE NO. ) 2 ? h

FREQUENCY , cps 0 0 ALY b,y

Tail 1.0 915 -0.052 0.10
1/ Chord Otrip I 1.0 =120 -0.00076 -0.0212
1 /4 Chord Strip II 1.0 Wy, 3 . 0455 -0.07k
1/4 Chord Strip III 1.0 208 0.178 0.0283

Mode Slopes

Tail 0 1.0 -0.0863x10°2 0.707x10">
Stream Slope ¢ -3 -o. -3
otrip I Y 1.0 0.019Tx10 0.204x10
Gtrecam Slope S : -3
Strip 1I 0 1.0 0. 1'xi0 0.168x10
Gtream Olopn P, .
Strip III Y 1.0 0.252x10 0.%80x10
ny

i ————— AT VRS



First Elastic Mode
Wy =5.95 rad/sec

Second Elastic Mcde
@, =7.749 rad/spe

FIGURE «~3. ELASTIC MODES FOR CONFIGURATION 4
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TABLE C-IV

MODE SHAPES AND FREQUENCIES
CONFIGURATION h

MODE NO. 1 2 3 b
FREQUENCY, cpo o 0 0.948 1.23
Mode Deflections

1/4 Chord Btrip I 1.0 -50.0 0.0122 -0.0258

1/4 Chord S8trip II 1.0 25.0 -0.0038% -0.0143

1/4 Chord Strip III 1.0 100 -0.0410 0.0644

%/4 Chord Strip I 1.0 150 0.0133 -0.04T7

3/4 Chord Strip II 1.0 175 0.0241 0.00212

3/4 Chord Strip III 1.0 200 c.0582 0.115

B
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TABRLE C~VIII
FLIGHT CONDITIONG

PAnSOon Fggw st AUTITUDE
PRESSURE, X 2,
CONFIGURATION pof ft /ooc MACH 1O, rt
5,050 2,060 1.84 0
2
12,960 3,500 2.96 (o]
639 1,003 0.97 20,000
2
1,197 1,003 0.90 0
858 2,20 2.37 22,500
h 1,N7T 2,430 2.50 4o, 000
4,250 2,490 2.50 20,000




Note:

Stations shewn in inches
fiea of canard (total fer Both sides) = 7000 in.2
Ares of wing (total for both sides) = 52,400 in.2

Figure C-4. Configuration 2

90




Fuselage

Station ¢ Note: Dimensions and stations
) e in inches
~\\ Alrplane symmetrical
about 3,
Span
| Ste.
| 230
T7o N

o i - K /Engine Nacelles
2 \\\550 -

200 | ™ e f
) B B V]

Elastic Axis

(735% Chord) '!: _ ,
1% 6o
!
|
Span
Sta.
690
1100 o}
e

4,

Pigure C-5. Configuration 3
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llote: Statlions in inches

.
10N ‘ Sta.

k5

Span
|— ?te..
160 Spen
l Sta.
a e
215 gpan
Sta.
. 650
L— Strip T
{ lElasth\ ~ 91:;1\
. Axis - X
~-Strip II AN \\‘
7 1 ~ 7l7
\4
L—Strj.p III"‘
|
|
-~
\,\
) C- \\l | C.P- —Ccp.
7l*~'?'T"" Strip | Chord | Arce per Side | Span Sta.|Fus. Sta.
| R DY T TR ] A
180 in.| h.1kx10* in. e Loz2.
L‘Ta‘il"‘ I 7 0 in X107 in : ] 2.2
' II | 140 ini| 5.22x10% in.2 35 567.6
q { x| 100 anf2.30010% 1.2 | 575 752.6
pail | 100 in2.0 it .2 | o 1100.0

Figure C-6. Aerodynsmic Strips for Corfigurstion 3




Fuselage G,
Station

Q ————

llote: Stations in inches
1 Airplane symmetrical about (

] -
350—— \

C.G. 500

F /_ Wing Mounted Store

: \

700

Cox#trol _
" Surf‘ace -

' } Spen |
d Sta.

Span 175 Span  Span
Sta Sta. Sta.

g 25 200 275

Figure C-T. Conf'igurai on k

a7

e

N S N T
3
]
S ——




Area per Span Sta.
\ trip | Chord side of C.P.
\\ I | %00 in.| 20,000 in.? 0
: \ 1T | 300 in.| 30,000 in.2[ 100
\ ITI | 200 in.| 20,000 in.gd 200

Control 50 in
Surfacd

1 7,500 in.3

AN
N\
) q
SN
N
F.S. — f/f o s
50 : \
. \\'
Strip I h S
R r.s. i
\\
\\
Stxip 1T |F.S.
1 ’ 600_"’1/14'c \\
: ¢ Tl TTT '
F.5— ® 3/he :
0 'E'S; 3 /4e |
75
_ F.S.
o 706 ® 3/ }
' N

Figure C-8. Aerodynamic Strips for Jonfig.ration L

9l

tlote: Stations in inches




APPENDIX T

NUMERICAL EQUATIONS OF MOTION,
APPROXIMATE FACTORS AND EXACT FACTORS

This appendix presents the majority of the numerical daute for the report.
The numerical equations of motion of the three vehicles are given in Fig. D-i,

152 43

D-2, and D-3, and include ihe static eercelastic correction for the modes not

ircluded. Tables D-I, D-II, and D-III present the exact factors for the equa-

tions and the values obtained with the approximatiion formulas presented in
Section III.
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TABLFE D-I

NUMERTCAL VALUES I'OR EXACT AND APPROXIMATE TRANSFER FUNCTION FACTORS
CONFIGURATION 2

Transfer q = 35.0 psi _ o q = 90.0 psi

Function 3 Modes L Modes 3 Modes I Modes

Factor [“Approx.| Exact | Approx. | Exact |Approx. | Exact | Approx.] Exact
B 1 7.3 | 733 | 7.36 | 7.4 | 22,0 | 224 21.9 | e2.4
(2tw) 5p 3351 338 38| .33 3190 573 36| 309
ofy 35 | 135 | 135 | 135 | 6.7 | 61.6 | 62 | 61.5
1atw) e | oty o2  .om| .08 200|  .196|  .eom| 276
3 1 - R Il - - |me Wk
@y | - 4 - | 303 288 -4 - | 8B .90
ey {357 REEEEES 325 26k gk |20z i—ao{
:a‘{-’” | 83.0 €x0 | 830 | 830 | 8.8 | 88.7 | 8.2 | 8.9
,;(2;a>)'w1 a9 a1 219 219 2991 .299- %02 .298
1€, | - - w2 Ju f - - per e
,i(ezm)—w2 1 - | - | = s -1 - | 10| 105
/me, | 2% @ @ @al Ton Bip 3T 3
|8, | 831 [ 832 | 830 | 831 | €8.8 | 887 | 882 | 89:0
i:(egw)el 1 .o8u .08k 085 .08 1  .108l ok [ 07 a0k
16, | - | - [|w2 b2 L - 1 -t uz
[eewg, | - | - | ) oAed -] - ke A6
E&%] | 577 ] s | 58| 58 | 16.2 [i6.2 | 165 | 163
f(atm)§31 | .o .82 .zT3| 386 533l s 7| 558
a)§52 1 IR T £ L R I A LI R
i:(egaf)ﬁﬂ - B - -‘_ ,- .(-)Sf .str; . ol dios | . 381
P, |- - | 2w | -2.3 - b -3:99 | -3.62
71/‘1“51@ - - - 2.63 2.71—7 - - 1 W26 kay
7“%;2 1 - - 87.6 | 86.5 - - e | e
ey, | - - | s - | - G250
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TABLE D-II

CONFIGURATION 3

NUMERICAL VALUES FOR EXACT AND APPROXIMATE TRANSFER FUNCTION FACTORS

31 psi

Transfer g=bb3psi a=8
Function 3 hodes 4 Modes 3 Modes 4 Modes
Fector 1™ Approx. =xact | Approx.| Exact Approx.| Exact | Approx. | Exact

of, 13.05 | 1278 | 12,6 | 132 | a2 | 19.6 | 2.0 | 2141
: (2(_3»)Sp 2.43 2.38 2.46 2.2 3.61 3.84 3.97 3.85
ofe 123 123 120 121 o 169 163 166

(2tw); o 3.58 3.62 3.64 3.65 6.03| 5.86| 6.0 6.00
a8, - - 8% |ex | - | - |08 e |
Tt | - | - 2.77 [ 286 - - | wss| mee
1/ | 88.7 | 89.0 9.5 | 90.8 | 8.2 | 18.3 | 8.2 | 63.5
|8 l1e2 |2 ng iz 6 166 157 163
@y, | 355 | 355 | M| 358 s5h7| 5431 569 5.62
16, - - |6 |ess - S I T
@)y, | - - | o3l w88l - L - [ o2 1.2
11/, ~ 29201 910 | .92 918 153 151 RSk T 1.53
7(1%1 122 122 118 121 165 [165 | 15T | 163
(2'900):6l 3.57 3.55 3.47 | %607 562 5.501 5.691 5.73
7w§2 - -] 699 695 - - 684 613
(2tw) o | - - .59% 496 - 1.02 - 780 |
u§51’ Cer P | Taz o |es 286 | 2% |ees
,—(;ggn)g51 5.56 5.56 .5k L.68 | 10.52 | 1052 | 7.73 6.55
: 31%52 - - i3k jikok - | - |60 |57
] (2§"’)§z2 - - T.t4% T.20 - 52.6 59.7

o - - 19.5 | 18.9 - - | et | 287
:(2§‘”)g1,.1 - - 1.25 1.10 - - 2.02 7 1.78
'wgug - - 124 122 - - 166 172
(2{;’.\:);' u - - 1.25 i.10 - - 2.02 1.78
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